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We present the results of large-eddy simulations (LES) of turbulent thermal convection
generated by surface cooling in a finite-depth stably stratified horizontal layer with
an isothermal bottom surface. The flow is a simplified model of turbulent convection
occurring in the warm shallow ocean during adverse weather events. Simulations are
performed in a 6 x 6 x 1 aspect ratio computational domain using the pseudo-spectral
Fourier method in the horizontal plane and finite-difference discretization on a high-
resolution clustered grid in the vertical direction. A moderate value of the Reynolds
number and two different values of the Richardson number corresponding to a weak
initial stratification are considered. A version of the dynamic model is applied as
a subgrid-scale (SGS) closure. Its performance is evaluated based on comparison
with the results of direct numerical simulations (DNS) and simulations using the
Smagorinsky model. Comprehensive study of the spatial structure and statistical
properties of the developed turbulent state shows some similarity to Rayleigh-Bénard
convection and other types of turbulent thermal convection in horizontal layers, but
also reveals distinctive features such as the dominance of a large-scale pattern of
descending plumes and strong turbulent fluctuations near the surface.

1. Introduction

In this paper we report results of numerical simulations of turbulent convection
generated by surface cooling in a layer of finite depth. The flow is a model of the
geophysical phenomenon that occurs in warm littoral waters in response to a cold air
outbreak.

The passage of a cold atmospheric front over tropical waters, such as off South
Florida, can cause a sudden (within few hours) drop of air temperature by as much as
10°C. During the following few days, the air remains considerably (several degrees)
colder than the ocean water. An example of the recorded temperature series is
shown in figure 1. Helped by radiative cooling due to, typically, clear skies, this
leads to significant convectively driven motions in the shallow water column. Field
measurements during such events show significant turbulent mixing and enhanced
rates of kinetic energy dissipation in areas with depths up to 15m.

During the passage of the front, the accompanying winds, over the initial period,
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FIGURE 1. Typical atmospheric and ocean conditions during an adverse weather event. Air (a)
and water surface (b) temperatures are shown as measured by a FWFY NOAA E-MAN buoy in
December 1998 at approximately 26°3.58' N and 80°5.58' W (continental shelf off Fort Lauderdale,
Florida). A cold spell in the middle of the month is the result of the passage of a cold atmospheric
front.

blow offshore (An et al. 2001). The offshore fetch is often too short (hundreds of
metres) to produce large-amplitude waves in the littoral zone, typically resulting in
fairly flat local seas.

It is very difficult and often impossible to make accurate non-intrusive measure-
ments of ocean flow phenomena. The measured data typically reflect a multitude of
diverse effects. For the flows in littoral waters considered in this paper, inevitable
complicating factors include, for example, variable bottom topography and pressure-
generated mean currents. Numerical simulations of an idealized problem similar to
the study we report here seem to be especially important for the ocean flows since
they allow isolation and investigation of one particular phenomenon.

Here, we neglect the complicating effects mentioned above; these important issues
may be included in subsequent studies. Further we assume that the diurnal oscilla-
tions of air temperature, although present, are considerably smaller than the general
temperature drop and can be neglected (see figure 1a). Thus, the problem is simplified
to that of turbulent convection generated by constant cooling applied at the surface
in an initially stably stratified finite-depth horizontal layer.

The initial stratification is due to the salinity and, to a smaller degree, temperature
gradients in an unperturbed fluid. The convective motions are generated solely by the
buoyancy mechanisms caused by inhomogeneities of the temperature field.

The isothermal (zero density perturbations) boundary condition is applied at the
bottom of the layer. This is in contrast to the no-flux condition often used for density
in oceanic flows. As a justification, we notice that the no-flux condition would be
unquestionably appropriate only for the density perturbations caused by variations
in salinity. For the temperature-induced fluctuations, both isothermal and adiabatic
conditions are idealizations of actual processes near the ocean bottom. We use the
isothermal approximation in these first simulations. The effect of the bottom boundary
condition will be a subject of future studies.

The flow considered in this paper belongs to the intensively studied family of
thermo-convective turbulent flows in wide horizontal layers. Well-known members



Turbulent convection driven by surface cooling 83

of the same family are, for example, Rayleigh-Beénard flow, the planetary boundary
layer, and penetrative convection caused by internal volumetric heat sources (see e.g.
experiments by Kulacki & Emara 1977 and applications to the solar granulation
phenomenon in Brummel, Cattaneo & Toomre 1995 and references therein). Our
model is close to the experimental setup of Adrian, Ferreira & Boberg (1986, referred
to herein as AFB86) where turbulent convection was generated in a layer between
two rigid plates by heating the lower plate and keeping the upper plate thermally
insulated.

A member of the family that stands out due to its peculiar properties is open ocean
convection (see Marshall & Schott 1999 or Maxworthy 1997 for a review), which is
generated by cooling of the surface of a deep stably stratified ocean. Unlike the flows
mentioned above, the dynamics of deep ocean convection is typically dominated by
the background stratification and the localized character of the cooling.

It has to be stressed that, despite all the similarities between the system considered in
this paper and other convective layers, our system demonstrates a unique combination
of the flow properties. For example, the buoyancy flux is applied at a free surface and
not at a rigid wall as in Rayleigh-Bénard convection, the planetary boundary layer,
or the AFB86 flow. Unlike astrophysical applications, we consider the flow without
volumetric heat sources. Further differences between our flow and the planetary
boundary layer include, for example, the length scales involved, and the absence of a
mean shear.

On the other hand, a common mechanism causes turbulent motions in all these
flows. This assumes the existence of common fundamental properties, which, indeed,
are well known. They are the presence of a well mixed core region, generation of
thermal plumes in unstable thermal boundary layers, and development of a large-scale
circulation pattern. The purpose of our investigation is to reveal (i) how these family
features transform in the particular case of surface-cooling-driven convection in a
stratified layer with isothermal bottom, (ii) what are the distinctive properties of the
flow.

The method of large-eddy simulations (LES) is applied. We use the scaling version
of the dynamic SGS (subgrid-scale) closure proposed by Wong & Lilly (1994).
Particular attention is paid to the question of accurate simulation of free-surface and
bottom boundary layers and comparison with DNS (direct numerical simulation)
data.

The paper is organized as follows. In §2, we formulate the problem and provide
details of the LES approach and the numerical method. The results of LES computa-
tions are discussed in § 3. Section 4 includes the comparison between LES and DNS
results. Concluding remarks are given in § 5.

2. Numerical model
2.1. Formulation of the problem

We consider a flow in a horizontal layer confined between a rigid no-slip bottom at
z = 0 and stationary free-slip surface at z = L, (see figure 2). The flow is assumed
homogeneous in both horizontal directions so that periodic boundary conditions with
the periodicity length scales L, and L, can be applied.

The fluid flow is generated through the thermal convection mechanism arising due
to the heat exchange (cooling) at the upper surface. In this study, we neglect the
effects of wind stress and surface gravity waves.
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FIGURE 2. Flow geometry; (z) is the initial density distribution, Hy and By are the heat and
buoyancy fluxes at the surface.

In the absence of any motions, the fluid is stably stratified due to the initial
temperature and salinity stratification. Adopting the linear approximation, we write
the total density field as

d—pz + p(x, y,z,t), d—p <0, (1)
dz dz

where pg and dg/dz are the reference (bottom) value of the density and a constant
vertical density gradient of the quiescent fluid, respectively, and p(x,y,z,t) is the
density perturbation due to the fluid motion.

Note that we use the traditional Boussinesq decomposition (1) even though there
is no mechanism in the system that would support the background stable density
gradient dg/dz after the convective motion sets in. This seems to be a reasonable
approach since one of the main goals of our study is to determine the effect (if any)
of the initial stratification on the evolution of the turbulent flow.

For constant salinity, temperature and density variations are related as

p = (=apo)T, (2)

where o is the thermal expansion coefficient.
The flow is described by the standard set of equations based on the Boussinesq
approximation

Prowal = Po +

Veu=0, 3)
0 1
it (u+V)u=——Vp— éezp +vVu, (4)
ot Po Po
dp _ dp 2
E+u Vp——wE—l—an, (5)

where v is the kinematic viscosity and ¢ = k/pgc,, is the coefficient of the density (and
thermal) diffusion, and e, is the unit vector in the direction opposing gravity.
The velocity boundary conditions are no slip at the bottom

u=v=w=0 at z=0, (6)
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and the free-slip lid approximation at the top

v Ju
=—=—=0 at z=1L,. 7
Y= T a s ™
To obtain the density boundary condition at the upper surface, we approximate
the cooling process by a constant heat flux H, that can be estimated, for example,
with Newton’s law of cooling Hy = h(Tuir — Turface)- Taking into account (2) and (1)
we obtain
op op o
— =———Hy—. 8
0z |,_p. 0z Oac,, @®
There are two options for the density boundary condition at the bottom. The first
is to require that the total density is fixed (isothermal condition), which gives

p=0 at z=0. (9)

The second is the condition of zero density flux (adiabatic condition) corresponding
to
op op
— =——at =0. 10
0z 0z z (10)
In this study, we concentrate on condition (9).
In order to obtain a non-dimensional formulation of the problem we use the depth
L. as the length scale and (ByL.)"/? as the velocity scale. Here
o
By = |Ho|-—— (11)
PoCp
is the buoyancy flux at the surface. In this work, we neglect the temperature de-
pendence of fluid properties so that the coefficient ag/poc, and hence By can be
considered constant.
The choice of the velocity scale is dictated by the fact that the turbulent velocity
in open oceanic convection scales as

u= (BOLZ)l/3

at high Rayleigh numbers (see e.g. Maxworthy 1997). For the time and pressure scales
we use LY 3BO_ 3 and Bg/ LY 3p0, respectively. The density scale is based on the initial
background stratification
[p] = L:|dp/dz|. (12)
The non-dimensional equations and boundary conditions are (we keep the same
symbols for the non-dimensional variables)

V-u=0, (13)
Ou . —1y2
i + (u-V)u=—Vp—Rie,p+ Re 'V-u, (14)
dp _ —1y2
E%—u-Vp—w—i—(RePr) V<p, (15)
u=v=w=p=0 at z=0, (16)
v Ou
W—&—E—O at Z—l, (17)
a—p=1+RePrRi_1 at z=1. (18)

0z
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The variable part of the total density field pur = P — po becomes, in non-
dimensional form,

Pvar = —Z+P(X’y,2, t)a (19)
where —z stands for the non-dimensional initial density distribution.
The non-dimensional parameters are the Reynolds, Prandtl and Richardson num-
bers given by
‘2‘/ 3 Bé/ 3

Re=———, Pr

- = Ri=(NLYB'Y, (20)

where

N = (|dp/dzlgpy")"?
is the buoyancy frequency. The definition of the Richardson number is different from
the more conventional definition Ri = N?(dii/dz)~2 that uses the gradient of the mean
velocity i, which is absent in our simulations.

An alternative to using the Reynolds number is to formulate the problem in terms
of the Prandtl number and the flux Rayleigh number

Ra= BOI? (21)
vo
and to express
Re = (Ra Pr=2)13 (22)
A typical situation considered in the present study is characterized by
Re>1, Pr=1, Ri>1. (23)

2.2. LES model

The large-eddy simulation (LES) technique has been increasingly applied in the last
three decades to overcome the inherent limitations of direct numerical simulations
for flows with low and moderate Reynolds number. In LES, a fine computational
grid is used to calculate only the part of the velocity and density fields corresponding
to length scales larger than the grid spacing. This resolved part of the flow can be
thought of as obtained as the result of spatial filtering or averaging of the actual flow
field with the filter width A equal to the grid spacing, and is typically denoted using
an overbar as & or p. The effect of the velocity and density fluctuations at smaller
scales is modelled using one of the subgrid-scale (SGS) closure methods.

We apply the scaling version of the dynamic SGS closure proposed for turbulent
thermal convection by Wong & Lilly (1994, hereafter referred to as WL94). Since a
detailed discussion can be found there, only a brief account is given in this paper.

We start with the classical Smagorinsky model generalized to include buoyancy
effects and express the SGS stress tensor

and SGS density flux
Tpi = m — ﬁlx_l, (25)
in terms of the resolved strain tensor

- 1 [om  om
Sij 5 (6)6]' + 8xi>
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and density gradient 0p/0x;, respectively:
5,‘]' -

Tij 3 Tk = —2v,Sij, (26)
p
Tpi = —;cta—;j. 27)

To determine the eddy viscosity and diffusivity coefficients v, and x, we apply
the dynamic procedure originally due to Germano et al. (1991) and WL94. Simple
arguments based on Kolmogorov scaling lead to the assumption that v, and k, are
proportional to A*3 with universal coefficients of proportionality (Kolmogorov 1941).
These coefficients are estimated through the use of the dynamic procedure. The
resolved flow fields are subjected to a second filtering operation with a larger ‘test’
filter width A. The test-filtered variables are denoted as i, ﬁ Coeflicients v, and k,; are
then determined using the least-square method:

> ULy — 8 Lia/ 3 — 3Ske/3)]

R

2 11— A/APS Sy — 6ySu/37)

i
> " R,0p/0x;
[1— (A/A* > (@p/0xi)

(see WL94 for details). The tensors L;; and R,; are calculated using the test-filtered
flow fields as

(28)

Vi

(29)

Lij - lﬁ —_— flﬂ?lj, (30)
Ryi = pil; — pli;. (31)

The scaling version of the dynamic model offers three essential advantages over the
more traditional version due to Cabot (1992) and Sullivan & Moeng (1992) referred to
as the ‘stratification formulation’ in WL94. First, it results in a considerable reduction
of computational time (about 1.7 times according to WL94). Second, the eddy
coefficients v, and k, are calculated independently so that no iterative procedure is
necessary. Finally, the scaling formulation allows one to avoid including the physically
unjustified buoyancy production term in the constitutive equations for v, and «;,.

A comment is in order regarding the assumed relation (27) between the SGS density
flux 7,; and the grid-scale density gradient dp/dx;. Some authors (see, for example,
Kimmel & Domaradzki 2000) rightly argue that this analogy to the eddy viscosity
assumption is rather crude and may be violated locally in real convective flows. This
critique, however, was mostly directed towards the classical Smagorinsky method,
where v, and k, are connected by the assumption of constant turbulent Prandtl
number. On the contrary, in the method we apply here, v, and k, are determined
independently using the dynamic procedure so that the turbulent Prandtl number
does not need to be prescribed. As was shown in WL94 and further discussed in
§4, this method offers important advantages over the Smagorinsky method and is
capable of reproducing essential characteristics of the flow.

In the calculations presented in this paper, the width of the test filter is chosen
as twice the grid size, A = 2A. The test-filtered quantities are obtained by volume
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averaging over the two adjacent grid cells in each horizontal direction. No test filtering
is made in the vertical direction, where we use a computational grid which is much
finer than the horizontal grid, so that the flow is fully resolved down to the smallest
scales. The reason for such an approach is the necessity to resolve the velocity and
density boundary layers as discussed below in §3.1.

Another important difference between our formulation and the scaling formulations
used in WL94 is that we do not apply any plane or local volume averaging of the
numerator and denominator of the fractions (28) and (29). Such an averaging is
typically used with the dynamic model to suppress a numerical instability. We found
that the instability can be efficiently prevented by smoothing the calculated v, and x,
fields after each time step with the help of the hyperviscosity compact filter proposed
by Lele (1992).

2.3. Numerical method

A combination of pseudo-spectral and finite-difference methods is used to calculate the
flow. In the horizontal directions, we exploit the advantage of the periodicity and apply
the pseudo-spectral technique based on the fast Fourier transform. Spatial derivatives
are evaluated using the Fourier representation, while multiplications required for the
nonlinear terms are performed in physical space.

In the vertical direction, the computational grid is strongly clustered near the upper
and lower boundaries so as to allow proper resolution of density and velocity boundary
layers. The physical coordinate z is transformed into the numerical coordinate {, where
the grid is uniform, according to
a
7
The degree of clustering is determined by the positive parameter a. A typical value
used in the calculations was a = 3.5.

The equations are discretized in the transformed variable { using the staggered
central-difference scheme of second order. Integer points {; = iA{, i =0,...,N,, are
used to calculate velocity and density perturbations and satisfy the momentum and
density equations. The pressure field and incompressibility condition are treated at
the half-integer points (i1, = (i + 1/2)AL.

For the time-differencing, we use a fully explicit implementation of the time-splitting
(also called the projection or fractional step) method based on the third-order Adams—
Bashforth scheme. To achieve greater numerical efficiency, the scheme was modified
to permit variable time-step changes according to a temporal stability criteria (see
Slinn & Riley 1998 for more details).

The Poisson equation for the pressure arising in connection with the time-splitting
method is solved using the pseudo-spectral technique in the periodic directions and
inverting a tri-diagonal matrix in the vertical direction. The boundary conditions for
the pressure are generated by projecting the momentum equations onto the normals
to the bottom and free surface.

To verify the code, we performed several DNS simulations in a smaller domain and
carefully examined the initial instability of the surface conductive layer (more details
on the DNS runs are in §4). It was found that both the critical Rayleigh number
and the wavenumber of the most unstable mode are in agreement with the linear
stability theory (see Maxworthy 1997 and references therein). Further verification was
delivered by the fact that, as discussed in § 3.2, the energy conservation principle was
satisfied with acceptable accuracy by the calculated solutions.

z= 11 +y  tanh(a( — 1)), ze[01], {€[0.1], 7 =tanh (32)
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3. Numerical experiments
3.1. Parameters and numerical resolution

The results of two full-scale numerical experiments are discussed in this section
(additional computations performed to validate the model against DNS results are
presented in §4). In both experiments, the horizontal dimensions L, and L, are six
times larger than the depth L., the Reynolds number (20) is Re = 1200, and the
molecular Prandtl number is Pr = 1. The corresponding flux Rayleigh number (21)
is 1.728 x 10°. The only difference between the two experiments is in the value of the
bulk Richardson number considered, Ri = 2 in the first experiment and Ri = 10 in the
second. The numerical resolution is based on 128 Fourier collocation points in each
of the horizontal directions and 150 discretization points in the vertical direction.

Later in this subsection, we will discuss the reasons that determined our choice
of flow parameters and resolution. The discussion will appeal to existing numerical
simulations of turbulent convection such as works by Groétzbach (1983), Eidson
(1985), Kerr (1996), and Kimmel & Domaradzki (2000).

The requirements for an adequate numerical (DNS) simulation of turbulent convec-
tion in horizontal layers were originally formulated and verified by Grotzbach (1983).
First, the horizontal dimensions of the computational domain should be large enough
to minimize the influence of periodic boundaries on the large-scale flow structures.
Second, the computational grid should be fine enough to resolve the smallest-scale
turbulent motions. Finally, the vertical grid width near the boundaries should provide
an adequate resolution of thin velocity and density (temperature) boundary layers.

It has been demonstrated in the simulations mentioned above that L, = L, > 6L,
usually suffices to minimize the impact of periodic boundaries on the large-scale
structures. Cells with aspect ratio between 6 and 10 are typically used in experiments
(see e.g. AFB86). Our calculations confirm that the computational domain with
L,/L, = L,/L. = 6 provides enough space for establishing a large-scale circulation
pattern, even though, as discussed below, the specific spatial features of the circulation
are, probably, influenced by periodic boundary conditions.

The second requirement is satisfied by our vertical grid and is accounted for in
the x- and y-directions through application of a SGS model. However, the resolution
should be kept fine enough to sufficiently resolve single large-scale thermal plumes
developing in the turbulent flow. The comparison between DNS and LES results in
§4 shows that this requirement is fulfilled in our simulations.

The third requirement still presents a serious problem in LES of turbulent convec-
tion. There are three different boundary layers in the flow considered in this paper:
the velocity boundary layer at the bottom and the density (thermal) boundary layers
at the bottom and at the upper surface. Obviously, an adequate description of the flow
can be achieved only if the impact of boundary layers on the core flow is properly
accounted for.

Any attempt to apply the SGS model in the vertical direction would, thus, require
a DNS-like resolution of the boundary layers (Eidson 1985) or wall corrections.
Unfortunately, the widely used wall corrections cannot be justifiably applied to our
problem. The wall function models developed and verified for channel flow (see
e.g. Schumann 1975) have to be excluded because they assume the existence of
a persistent mean velocity near the bottom and are designed specifically for high
Reynolds number flows over rough surfaces. Neither of these conditions is fulfilled in
our flow. Another approach based on the Monin—Obukhov relation was developed
using the measurements made in the convective planetary boundary layer (see e.g.
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Schmidt & Schumann 1989). This method cannot be applied to our flow for the same
reasons as the channel flow models and because of other differences between the
conditions in the planetary boundary layer and those in an oceanic water column.

Our preliminary attempts to model the surface heat flux using a bulk parameteriz-
ation into an unresolved thermal boundary layer (see e.g. Denbo & Skyllingstad 1996)
produced flow features similar in behaviour and resulting net fluxes to the resolved
boundary layer simulations. No satisfactory treatment could, however, be found for
the unresolved no-slip boundary conditions at the sea floor.

In this paper, our main aim is to achieve a better understanding of the basic
properties of the flow induced specifically by surface cooling. Therefore, we avoid
uncertainties introduced by wall models and apply the method of complete numerical
resolution of the vertical flow structure including the velocity and density boundary
layers. An inevitable price to be paid for that is a moderate value of the Reynolds
number that is about two orders of magnitude smaller than the Reynolds number in
real oceanic flows.

The following estimate can be given for the Reynolds and Richardson numbers
during actual adverse weather events in the ocean. The estimate is based on CTD
(conductivity, temperature and depth) casts from a ship (Dhanak, unpublished). The
measurements were made in littoral waters off the coast of Florida during winter time.
We use the value 5.3 x 10~*m?kg ™" for the constant ag/c,p, which approximately
corresponds to water temperature in the range 20 °C to 25 °C studied here. Considering
a typical situation with the surface heat flux Hy ~ 200 W m~2 and the initial density
gradient dj/dz ~ 0.02kgm™, a flow in a layer, which is 10m deep, would have
Re ~ 10° and Ri = 200. Our simulations with Re = 1200 and Ri = 2 can be thought
as of, for example, carried out with the same background density gradient, and with
L. =034m and Hy = 212W m~2 (for Ri = 2). The flow with Re = 1200 and Ri = 10
could have the same L, and H, and five times larger density gradient, or the same
dp/dz and L. = 0.51m and Hy = 42Wm™>

We would like to make a comment regarding the duration of our numerical
experiments and its relation to the duration of an actual adverse weather event. If
we assume (not having any strong reason for that) that the flow evolution described
by the non-dimensional curves in figures 3 and 4 could be extrapolated to the case
of Hy ~ 200Wm™2 and L, = 10m then the total dimensional duration of each run
would be about 25 hours, which seems sufficient to capture the principal features of
the flow.

3.2. Flow evolution

The flow evolution is illustrated in figure 3, which shows volume-averaged kinetic and
potential energies

KE, =1 +v%),, KE.=(w?, PE=1Ri(p?), (33)
as functions of time. The brackets (...), are used hereafter for volume averaging,
while the same brackets without subindex (...) are reserved for the averaging over a
horizontal plane.

In both experiments, the heat flux is abruptly applied at t = 0 to the upper
surface of the flow consisting of the background density distribution and infinitesimal
velocity perturbations. Initially, only the potential energy grows, which corresponds
to the growth of the conductive boundary layer at the upper surface. In a short
period of time, cold heavy fluid diffuses deep enough so that the Rayleigh number
based on the depth of the conductive layer exceeds the critical stability value of about
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FiGURE 3. Volume-averaged kinetic and potential energies (33) as functions of time.
(a) calculations with Ri = 2; (b) calculations with Ri = 10.

5 x 10% (Maxworthy 1997). The conductive layer becomes unstable and gives rise to
a convective flow in the form of multiple descending plumes. The beginning of plume
generation coincides with the drop of potential energy and the start of the growth of
the kinetic energy curves in figure 3.

The subsequent flow evolution can be divided into two stages. During the first stage,
the plumes move downward, interacting with one another and generating turbulent
motions. Typical characteristics of this stage are rapid growth of both the vertical
and horizontal components of the kinetic energy and increasing slope of the potential
energy curve.

The second stage, which can be considered as that of fully developed turbulence,
is characterized by a plateau in the vertical kinetic energy curve, slightly reduced
growth of the horizontal kinetic energy, and the slope of the potential energy curve
approaching a constant.

It should be stressed that the flow we consider in this study is unsteady even
in the statistical sense. Unlike, for example, Rayleigh-Bénard convection, where,
in a developed state, the energy input through one surface is balanced by the
output through the other surface, the total energy in our system grows during the
entire numerical experiment. Clearly, this happens because the heat flux through
the isothermal bottom is not equal to the imposed surface heat flux.

The unsteadiness of the flow resembles the behaviour of turbulent thermal convec-
tion between heated and thermally insulated surfaces (see AFB86). It can be proven
that, in the latter, the horizontally averaged temperature of the entire layer increases
linearly with time. We examined the time evolution of a horizontally averaged density
profile in our simulations and found that it moved as a whole towards larger density
perturbations. The differences (p(z) — p(0)) experienced continuous, though irregular,
growth. More detailed discussion of the time evolution of the flow is pursued in § 5.

One has to guard against too close an analogy between our system and the system
studied in AFB86. In our case, the isothermal boundary condition will, eventually, lead
to establishing a statistically steady state, in which the temperature difference between
the cold core and the bottom will grow strong enough to produce the heat flux that
will balance the surface heat flux. There are several reasons why we study the initial
unsteady phase of the flow and do not pursue the final steady state. First, according
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FIGURE 4. Terms of the kinetic (a,b) and potential (c,d) energy equations (34) and (35) as functions
of time. Plots (a) and (c) are for the run with Ri = 2, and plots (b) and (d) are for the run with
Ri = 10. Horizontal dotted lines are to show the zero level and to demonstrate the deviation of the
slope of potential energy curves from a constant.

to the estimates made in the end of §3.1, the total duration of our experiments
corresponds to the typical time scale of the ocean phenomenon under consideration.
Furthermore, the isothermal idealization of the bottom boundary condition becomes
less justified at the larger temperature drop across the bottom boundary layer achieved
at the steady state.

Figure 4 illustrates the energy balance in the flow. The energy equations are

d

aKE =—€—¢€ — By, (34)
d
SPE=—y—1+B+0, (35)

where KE = KE,,+KE. and PE are volume-averaged kinetic and potential energies,
2

€= R7<Si§'>” and € =2(v,S}), (36)
are resolved and SGS rates of dissipation of kinetic energy,
Ri .
1 ((Vp)y’), and z = Ri(ki(Vp)’), (37)

- PrRe
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are resolved and SGS rates of dissipation of potential energy,

0= s (v ) (38)
z=1

PrRe
is the horizontally averaged potential energy flux at the upper surface, and

By = Ri(wp), (39)

is the buoyancy flux.

It can be seen in figures 4(c) and 4(d) that the growth rate of potential energy
changes very slowly in the developed turbulent flow so that it can be considered
approximately constant. It is also interesting that ¢, and y, are considerably smaller
than, correspondingly, € and y, implying that the modelled fluctuations at subgrid
scales are responsible for only a fraction of the total dissipation of kinetic and potential
energies. However, as will be discussed later in this section, the major portion of the
dissipation at resolved scales occurs near the upper and lower boundaries. In the core
flow, €, is comparable to €, and y, is approximately equal to y.

The energy balance (34) and (35) was accurately reproduced by the numerical
model. The difference between the left- and right-hand sides was found to remain
within 2% of dK E/dt and dP E /dt, respectively.

3.3. Spatial structure of the flow

The spatial structure of the flow at different stages of its evolution is illustrated in
figure 5. It has to be stressed that the horizontal numerical resolution is not sufficient
to resolve the finest features of flow patterns, which are averaged out by the filtering
procedure. However, as discussed in more detail in §4, the LES simulations adequately
describe the most important features of the flow dynamics.

Figure 5 shows the distribution of the variable part of the total density field p —z in
the vertical cross-section taken at y = L, /2. Here, p is the density perturbations, and
—z stands for the non-dimensional background stratification. The constant reference
density py is not included.

Two snapshots are shown for each numerical experiment. The flow during the initial
developing phase shown in figures 5(a) and 5(c¢) is dominated by cold plumes gener-
ated at the upper surface and descending toward the bottom. The plume propagation
is opposed by the stable background stratification, whose influence is stronger in the
case of larger Richardson number (cf. figures 5¢ and 5a). This effect is responsible for
the considerably longer period of initial flow development observed in the experiment
with Ri = 10 than in the case with Ri = 2 (cf. figures 3a and 3b).

The flow evolution during the initial phase is similar to the evolution observed in
deep ocean convection (for a review see e.g. Maxworthy 1997 or Marshall & Schott
1999).

Typical flow patterns in the developed turbulent state are illustrated in figures 5(b)
and 5(d). Again, the flow is dominated by descending plumes but their number is
considerably smaller than during the initial phase. Apart from the areas of strongest
plumes, the density field is rather homogeneous in the core flow.

To illustrate the velocity field associated with the descending plumes in fully
developed turbulent flow, a part of the vertical cross-section from figure 5(b) is shown
in figure 6(a) with the projections of the velocity vectors plotted upon the density
field. One can clearly see strong surface currents directed toward the spot where the
plume is generated. Another remarkable feature observed earlier in Rayleigh-Bénard
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convection is the bottom velocity boundary layers generated when plumes hit the
bottom and spread out.

To quantify the presence of large-scale coherent structures in the flow we calculated
two-point velocity correlations over the distances L./2 and L,/2 in the horizontal
directions:

C. = (ui(x, O)u;(x —L— 0.5Lxex)>v’ Cyi— (ui(x, O)u;(x —i— 0.5Lyey)>v’ (40)
(u7) (uf)
where u;, i = 1,2, 3, stand for the velocity components u, v and w, and (...}, is the
volume average. The results are shown in figure 7. It can be seen that the transition
to developed turbulence is associated with the strong growth of the magnitude of
correlation coefficients (40).

The global pattern of the large-scale circulation is presented in figures 6(b) and 8.
We show the flow calculated in the run with Ri = 2 for the same instant of time as
in figures 5(b) and 6(a).

In figure 8, density and vertical velocity fields are plotted in the horizontal cross-
sections lying just below the upper surface at z = 0.994L,, at the mid-plane z = L, /2,
and at the plane z = 0.006L, near the lower boundary. The density distribution
under the upper surface (figure 8a) is similar to the distributions observed in other
convective flows with a free surface, such as convection driven by surface evaporation
(Saylor, Smith & Flack 2000) or the solar convection zone (solar granulation, see e.g.
Brummel et al. 1995). The areas of cold heavy fluid are aligned into large-scale stripes
that extend across the entire flow domain.

It can be seen in figures 8(a) and 8(d) that the plume formation starts with cold
liquid sheets (blue stripes in figure 8d) leaving the conductive boundary layer at the
upper surface. As they descend, the sheets are diffused by turbulent motions and
coalesce into broad plumes (see figures 8b and 8e). These structures can be observed
down to the bottom boundary layer, where they disappear, losing momentum to the
shear flow (see figures 8c and §f).

An interesting observation can be made regarding the statistical properties of our
system with respect to the mid-plane. Different types of horizontal convective layers
can be distinguished by such properties. For example, the Rayleigh-Bénard system is
statistically symmetric, which can be seen, for example, in the distinctive symmetry
or anti-symmetry of horizontally averaged vertical profiles. The reason for that is,
of course, the symmetry of upward and downward flows. The upward motion of
hot fluid occurs in the same manner as the downward motion of the cold fluid. On
the contrary, the system with heated bottom and insulated top studied in AFB86 is
completely asymmetric. The thermal plumes are generated at the bottom surface only.

Our system can be considered as occupying an intermediate position between the
two mentioned above. The flow is strongly asymmetric during the initial stages of its
evolution. At the later stages, the isothermal bottom becomes considerably warmer
than the mixed fluid in the core region. As a result, ascending liquid sheets and plumes
develop, similar to those in Rayleigh-Bénard flow. It must be stressed, however, that
the ascending sheets and plumes are less pronounced and are characterized by smaller
amplitudes of local peaks of velocity and density fluctuations than the descending
ones. This conclusion is not apparent on comparison of the corresponding patterns in
figure 8. However, as discussed below, it is strongly supported by the skewness profiles
and probability density functions (p.d.f.s) of density and vertical velocity fluctuations.
Another manifestation of the asymmetry is that the surface currents replace the shear
flow as a sink of momentum of plumes approaching the upper surface.
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FIGURE 5. Non-dimensional density distributions in the vertical cross-section at y = L, /2. Typical
flow patterns during initial t = 1.81 (a,c¢) and developed ¢t = 11.52 (b,d) stages are shown for both
experiments; (a,b) Ri =2, (¢,d) Ri = 100.

A remarkable feature of the flow that can be seen in figure 8 is that the upward
and downward motions are organized into a large-scale pattern with the upward
flow areas (red and yellow colours in figure 8¢) located between the broad bands of
downward flow (blue and deep green colours in figure 8e¢). For further illustration
of this phenomenon two density isosurfaces are plotted in figure 6(b). The isosurface
with p = 7 (red) is thought to be associated with the outer boundary of descending
plumes, while the isosurface with p = 3 (blue) shows the warm liquid sheets ascending
from the bottom.

This large-scale pattern is similar to the diagonal pattern detected in the DNS
of turbulent Rayleigh-Bénard convection (Kerr 1996). The difference between the
diagonal and our somewhat distorted shape can be attributed to the asymmetry
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FIGURE 6. (a) Flow calculated with Ri = 2 at t = 11.52. A part of the vertical cross-section in
figure 5(b) is reproduced with projections (u,w) of the velocity vectors plotted upon the density
distribution. (b) Three dimensional plot of two density isosurfaces: p = 7 (red) and p = 3 (blue).
The upper part of the p = 7 isosurface is removed to make the interior visible.

between the upward and downward flows in our problem. It should be stressed,
however, that both our pattern and the diagonal pattern obtained by Kerr are
affected by the periodic boundary conditions.

The impact of the boundary conditions can be estimated from the data presented
in figure 7. In principle, the correlations (40) should vanish to ensure an adequate
representation of the dynamics of large-scale structures (see Moin & Mahesh 1998
for a discussion). Figure 7 shows that as the developing large-scale circulation pattern
grows, it becomes affected by periodic boundaries. This effect is rather involved
and will be a subject of future investigations. For now, we may state that the
development of large-scale structures has been proven by the simulations, although
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FIGURE 7. Correlation coefficients (40) calculated in the runs with Ri = 2 (a) and with Ri = 10 (b).

the exact details of these structures should not be considered to be generally valid.
A similar situation was met in the studies of Rayleigh-Bénard convection. Global
circulation patterns were detected in simulations by Kerr (1996) and in large aspect
ratio experiments by Krishnamurti & Howard (1981). The difference between the
numerical and experimental results was that a much more regular structure, clearly
affected by the periodicity, was observed in the simulations.

Finally, we would like to discuss the question of the possibility of a large-scale
flow associated with slow horizontal drift of the plumes. Such a flow was earlier
detected by Krishnamurti & Howard (1981) and in low Prandtl number experiments
by Cioni, Ciliberto & Sommeria (1997). In an attempt to detect similar drifting flow
we visualized velocity and density fields in horizontal and vertical cross-sections. No
noticeable drift was observed on the time scale of our numerical experiment; the
plume generation happened at approximately the same locations during the entire
period of developed turbulence. This observation, of course, does not exclude the
possibility of drifting flow at larger time scale or in a cell with larger aspect ratio.
We note further that, in our preliminary two-dimensional DNS of the convection
problem, vertically varying horizontal drift was produced.

3.4. Vertical profiles and distribution functions

Vertical profiles of horizontally and time-averaged flow properties are presented in
figures 9—11. The time averaging is performed during the phase of developed turbulent
flow over the period 8.33 < t < 13.17 in the run with Ri = 2, and over the period
9.22 < t < 14.55 at Ri = 10. Different intervals are used for time averaging because
stronger stratification at Ri = 10 leads to a longer stage of initial development of the
flow and, thus, to a shift of the interval of developed turbulence towards larger ¢.

As we have already discussed in § 3.2, the flow considered in this paper is statisti-
cally unsteady. The most prominent manifestation of the unsteadiness is the strong
continuous growth of density perturbations (see curves of potential energy in fig-
ure 3) associated with the continuous cooling of the entire domain. Therefore, for
time averaging of flow properties associated with the density field we used profiles
calculated as (f)/(f),, i.e. horizontally averaged vertical profiles normalized by the
volume average calculated for the same t. The changes in the amplitude of velocity
fluctuations are much slower. Accordingly, a standard time averaging procedure was
used for all quantities that do not involve density.
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FiGURE 8. Structure of the flow calculated at t = 11.52 in the run with Ri = 2. Density perturbations
p (a,b,c), and vertical velocity w (d,e,f) are shown in horizontal cross-sections at z = 0.994L,
(a,d), z=1L./2 (b,e), and z = 0.006L, (c,f). Upper limits of contour distributions for density, and
both upper and lower limits for velocity are taken at 85% of the maximum or minimum values,
respectively.

The following discussion intensively uses comparison between our results and the
results obtained for two similar systems: Rayleigh-Bénard flow (see e.g. Deardorff
& Willis 1967 and Kerr 1996) and the flow between heated bottom and insulated
top rigid plates studied in AFB86. In order not to overload the discussion we avoid
comparison with other members of the same family such as, for example, the planetary
boundary layer.
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FIGURE 9. Time-averaged profiles of r.m.s. horizontal velocity (a), r.m.s. vertical velocity (b), variable
part of normalized total density (c), and normalized density variance (d). For normalization in (c)
and (d), volume-averaged density perturbation (p), is used. , Calculations with Ri = 2; ———,
calculations with Ri = 10. Dotted curve in (b) is obtained by symmetric reflection of the solid curve.

Figure 9 presents the profiles of resolved velocity and density fields. The shape of
the root-mean-square horizontal velocity profile in figure 9(a) demonstrates the most
important effect of asymmetry of the boundary conditions at the lower and upper
surfaces. Near the bottom, a shear boundary layer is clearly seen, which is, of course,
the product of the thermal plumes hitting the wall in exactly the same way as in the
Rayleigh-Bénard or AFB86 systems.

Close to the upper surface, the behaviour is completely different. The horizontal
velocity grows gradually and reaches its maximum at the surface, thus demonstrating
the presence of strong surface currents. The driving mechanisms of these currents
are the buoyancy forces associated with the formation of descending plumes and, to
smaller degree, the momentum transfer by the ascending plumes.

The profiles of vertical velocity in figure 9(b) are very similar to the corresponding
profiles in the Rayleigh-Bénard and AFB86 systems. The energy of vertical motion
increases toward the middle of the layer. The difference between the three systems is
in the symmetry properties with respect to the mid-plane. In Rayleigh-Bénard flow,
where the ascending and descending plumes are statistically equally strong, the profile
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of (w?)!/2 is symmetric. In the system considered in AFB86, no plumes are generated
at the insulated surface. Therefore, a strong asymmetry is observed.

It can be seen in figure 9(b) that, in our flow, a combination of stronger descending
and weaker ascending plume patterns leads to a slightly asymmetric profile. Com-
parison between (w?)!/?(z) (solid line) and (w?)!/?(1 — z) (dotted line) shows that the
root-mean-square vertical velocity in the upper half of the convective layer is slightly
larger than in the lower part.

A remarkable feature of the curves in figures 9(a) and 9(b) is that there is nearly
no difference between the velocity profiles calculated with Ri = 2 and Ri = 10. The
two numerical experiments can be thought as of performed with the same layer depth
and surface buoyancy flux but with different initial density gradients dg/dz. Since
the velocity scale used for non-dimensionalization does not include dj/dz we may
conclude that, as expected, the turbulent velocity field in the developed turbulent state
is not affected by the initial background stratification.

In agreement with the traditional picture of a well-mixed layer in developed
turbulent convection, the horizontally averaged density profile consists of a nearly
constant part in the core region and density boundary layers near the upper and
lower boundaries. Visualizations showed that neither the slope of (p — z) in the core
flow nor the thickness of the boundary layers change with time. Note that, according
to the decomposition (19), the variable part of the total density field is presented by
p — z and not just by p.

The profile of horizontally averaged density variance ((p')?*) = {(p — {p))?) is shown
in figure 9(d). The lower part of the profile is similar to the corresponding parts
observed in Rayleigh-Bénard and AFB86 systems. The variance is approximately
constant in the core flow and has a peak near the bottom. On the other hand,
the upper parts of the profiles are totally different in all three cases. In Rayleigh—
Bénard flow, the lower and upper parts are symmetric. In the AFB86 experiments,
the intensity of density fluctuations near the insulated boundary remains at the same
level as in the core flow. In our simulations, the profile in figure 9(d) demonstrates
that the density fluctuations in the upper boundary layer are much stronger than
in the rest of the flow. In particular, averaged density variance at z = L, is more
than tenfold the variance in the core flow. Another illustration of this fact is depicted
in figure 8(a—c). One can see that, in comparison with the mid-plane and bottom
areas, the density distribution near the top contains much more intense small-scale
fluctuations (highly intermittent red and blue spots in figure 8a).

A remarkable property of the flow can be seen in figure 10(a). The horizontally
averaged convective buoyancy flux (pw) is not constant across the core region, as is
the case in turbulent Rayleigh-Bénard convection, but a linear function of z. Similar
results were obtained in other unsteady systems such as the AFB86 experiments or
deep ocean convection (see e.g. numerical simulations of Denbo & Skyllingstad 1996).
A constant but non-zero slope of the profile (pw) is in obvious agreement with the
non-steadiness of the flow and with the fact that the slope of (p) remains constant
across the interior of the domain. Indeed, horizontal averaging of all terms in the
density equation (15) gives

0 0 1

&<P> = —5<PW> + @@@f (41)

Neglecting the diffusive flux and assuming that d{p)/dt is positive and z-independent
we come to the necessity of a negative z-independent 0{pw)/0z.
Figures 10(b), 10(c) and 10(d) show, respectively, profiles of eddy viscosity (v;),
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Ficure 10. Time-averaged profiles of normalized convective buoyancy flux (a), eddy viscosity (b),
eddy diffusivity (c), and turbulent Prandtl number (d). , Calculations with Ri = 2; ———,
calculations with Ri = 10. Dotted curve in (d) is for abscissa 0.25.

eddy diffusivity (x,), and turbulent Prandtl number Pr, = {v,)/{x;) calculated using
the dynamic SGS closure as discussed in §2.2. We would like to stress that, in the
simulations, v, and k; are determined independently of one another as functions of
time and all three spatial coordinates. The curves in figure 10(b—d) are results of
a-posteriori time and horizontal averaging.

One can see that the profiles are in agreement with the structure of the flow.
Both (v,) and (x,) are approximately constant in the core flow where the intensity
of turbulent fluctuations is nearly uniform. A very important attribute is that the
dynamic model provides the correct behaviour of eddy coefficients in the boundary
layers. The eddy diffusivity vanishes in the upper and lower density boundary layers,
where molecular diffusion dominates over turbulent convective flux. The same is true
for the eddy viscosity in the shear boundary layer near the bottom. On the other
hand, at the upper surface, where strong turbulent fluctuations are observed, the eddy
viscosity reaches its maximum.

An interesting result was obtained for the turbulent Prandtl number. It can be seen
in figure 10(d) that, except in the boundary layers, Pr, is nearly constant and can be
approximated as Pr, ~ 0.25. This estimate is certainly in contradiction with the range
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FiGUure 11. Time-averaged profiles of resolved and SGS dissipation rate of kinetic energy (a),
resolved and SGS dissipation rate of potential energy (b), vertical velocity skewness (c), and
skewness of the density fluctuations p’ = p — (p) (d).

1/3 < Pr, < 1/2 usually accepted for the classical Smagorinsky model (see §4 for
further discussion).

Figure 11(a) shows vertical profiles of resolved and SGS dissipation rates. The
curves obtained with Ri = 2 and Ri = 10 are very close, which again suggests that
velocity fluctuations in a developed turbulent flow are insensitive to the initial strati-
fication. Further, we observe that, similar to other types of convection in horizontal
layers, both (¢) and (e;) profiles are nearly uniform in the core flow. The dissipation
rate at the resolved scales is about three times larger than the modelled dissipation
rate. Within the shear boundary layer near the bottom, SGS dissipation vanishes after
a small peak. The resolved dissipation rate grows strongly and reaches the maximum
value at the wall, where it is more than 20 times larger than in the core flow. Near
the upper surface, both (¢) and (¢,) grow considerably.

The profiles of resolved and modelled dissipation rates of the potential energy are
presented in figure 11(b). In the core flow, the profiles are asymmetric. The values
of {y) and (y;) decrease with depth following the decrease in the intensity of the
density fluctuations. It must be stressed, however, that the core region is responsible
for only a minor part of the dissipation. Both (y) and (y,) become much larger as we
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approach the density boundary layers near the top and bottom boundaries. Within
the boundary layers, (y,) vanishes, while (y) grows and reaches values that are two
or three orders of magnitude larger than in the core flow.

As was discussed in earlier works (see e.g. Willis & Deardorff 1974), information
about the skewness of vertical velocity and density (temperature) fields is of funda-
mental importance for understanding the properties of turbulent convection. Positive
or negative skewness means more intense and frequent occasional large excursions
of the field variable in, correspondingly, positive or negative directions. For example,
the dynamics of the atmospheric planetary boundary layer is dominated by strong as-
cending thermal plumes. Accordingly, positive values of the skewness (w3)/(w?)¥? of
vertical velocity components were detected in measurements and simulations (see e.g.
Lenschow, Wingaard & Pennel 1980 and Moeng & Rotunno 1990). In the Rayleigh—
Bénard flow, the symmetry of ascending and descending plumes with respect to the
mid-plane results in a vertical velocity skewness profile that is antisymmetric with
respect to this plane (Willis & Deardorff 1974 and Kerr 1996).

The results of our calculations are presented in figure 11(c,d). The vertical velocity
skewness in figure 11(c) is negative in most of the flow domain. Since the negative
skewness can be considered as an indication of localized areas of strong negative
velocity, we may conclude that the vertical velocity field is dominated by localized
descending plumes. Another interesting observation can be made from the closeness of
the curves for Ri = 2 and Ri = 10 in figure 11(c): exactly as velocity fluctuations and
dissipation rates, the third moment of the vertical velocity distribution is insensitive
to the initial stratification.

The skewness profiles of density fluctuations p’ = p — (p) shown in figure 11(d)
have the Z-shape with thin boundary layers near the top and bottom boundaries that
resemble the profiles obtained by AFB86. They are also similar to the profiles found
in Rayleigh-Bénard flow with one important distinction: contrary to the Rayleigh—
Bénard flow, where the profiles are antisymmetric with respect to the mid-plane, the
profiles in figure 11(d) are shifted toward positive p’. This supports our conclusion that
the flow is dominated by spatially localized descending cold plumes. The only region
where the ascending plumes are more pronounced so that the density distribution is
negatively skewed is just above the bottom boundary layer.
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Further insight into the statistical properties of the density fluctuations can be
obtained from figure 12. Tt shows the probability density functions of p’ = p — (p)
computed in the horizontal planes near the bottom (z = 0.006L;), in the middle of
the domain (z = 0.5L,), and within the upper boundary layer (z = 0.994L.). The data
were collected during the same periods of time as the data used for the time-averaged
profiles in figures 9-11. In order to eliminate the weighting effect of the net growth
of density perturbations we normalized p’ using the volume-averaged density (p),
calculated at the same instant of time.

It can be seen that, in agreement with figure 11(d), the p.d.f.s are positively skewed,
i.e. they have more extended positive than negative tails. The distributions calculated
in the middle of the domain have distinct exponential tails. This suggests the presence
of persistent coherent structures in the flow, which are, of course, turbulent thermal
plumes.

Another remarkable property of the curves in figure 12 is that the distributions
just below the upper surface have much wider extending tails than the distributions
in the middle of the domain or within the bottom boundary layer. This implies
much stronger density fluctuations near the upper surface, the phenomenon already
illustrated in figures 9(d) and 8(a—c).

4. Comparison between DNS and LES

A separate set of numerical experiments was carried out to evaluate the performance
of the dynamic model in simulation of turbulent penetrative convection. Below we
discuss a-posteriori tests of the model. The results of dynamic LES simulations are
compared with the DNS results and with the results of computations using the
classical Smagorinsky model with fixed turbulent Prandtl number.

For the test calculations, the horizontal size of the computational domain was
reduced to L, = L, = L.. The reduction was necessary to make possible DNS at
the same Reynolds number as in the main LES runs discussed earlier. We realize
that the small aspect ratio suppresses the large-scale circulation and, thus, does not
offer a direct evaluation of the accuracy with which our LES model simulates this
particular aspect of the flow. We believe, however, that since the largest-scale motions
are well resolved in LES, their behaviour is modelled reasonably well provided the
flow dynamics at smaller scales are reproduced accurately. The latter is the subject of
tests presented in this section.

In the vertical direction, we used the same clustered computational grid of 150
nodes as in the main calculations. The horizontal resolution was 128> in the DNS
run and 322 in LES runs. The non-dimensional parameters were Re = 1200, Ri = 2,
and molecular Prandtl number Pr = 1.

The DNS run was initialized in exactly the same way as the two main LES
runs discussed above, i.e. with infinitesimal random velocity and unperturbed stably
stratified density distribution. It was continued well into the stage of developed
turbulent flow, the total duration being T = 16.36. The DNS flow fields obtained at
t = 8.34 were filtered in the horizontal directions to the grid 32 x 32 and used as the
initial condition for the LES runs.

Two LES runs were performed, one using the dynamic model and the other with
the classical Smagorinsky model. In the latter, the components of the SGS stress
tensor and density flux are given by (26) and (27). The eddy viscosity and diffusivity
are defined as

Vi = (CA)z(ZSijSij)l/za K = v/ Pr, (42)
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FiGURE 13. Volume-averaged kinetic (a) and potential (b) energies (33) as functions of time.
, DNS run; ———, dynamic LES run starting at t = 8.34; --.-.-. - , Smagorinsky LES run
with Pr =04; ----..—..—, dynamic LES run starting at t = 0.

where C = n!(3C,)** and C, = 1.5 is the Kolmogorov constant. The prescribed
turbulent Prandtl number Pr, in (42) is, typically, assumed to be in a range between
1/3 and 1/2 (see e.g. Eidson 1985). Our calculations were performed with Pr, = 0.4.

As was discussed above, an important feature of the dynamic approach is that
it provides a tool to simulate transitional laminar—turbulent flows. This ability has
already been exploited in this paper. However, one must recognize that a crude
computational grid used in LES may fail to resolve fine structures, whose development
determines the instability, and produce an irrelevant model of flow evolution. As
applied to our flow, the LES grid might be incapable of adequate representation of
small-scale plumes generated at the initial stage of the flow.

To investigate the possible influence of the poor resolution at this stage on the
general flow evolution, an additional dynamic LES run was performed. This run
started just as a DNS run, ie. at t = 0 with infinitesimal velocity and zero density
perturbations. The horizontal resolution and flow parameters were the same as in the
other LES runs.

The results of calculations are illustrated in figures 13—15. One can see in figure 13
that the time evolution of flow energy is reproduced rather well in all LES runs.
The potential energy curves practically collapse into one curve. For the kinetic
energy, individual fluctuations differ considerably between the runs, but the long-time
evolution as well as the typical time scale and amplitude of the fluctuations are very
similar.

We performed visualizations of DNS and LES solutions and found that, at the
initial stage, the horizontal LES grid does not suffice for accurate resolution of the
small-scale plumes generated by the flow instability. As a result, slightly larger (about
50%) plumes develop in the LES than in the DNS flow. The subsequent evolution of
the plumes, generation of developed turbulent flow, and formation of the large-scale
coherent structure were found unaffected by the lack of horizontal resolution. The
flows in DNS and all LES runs were very similar regarding their general appearance,
intensity, and typical time and length scales. The fact that the kinetic energy curves in
figure 13(a) still deviate from one another at the turbulent stage can be explained by
the poor resolution of small-scale fluctuations in the LES runs. This, of course, affects
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the exact path traversed by the evolution of individual large plumes dominating the
flow.

Further comparison between DNS and LES computations is made in figure 14
that shows time and horizontally averaged vertical profiles of the root-mean-square
horizontal velocity and density fluctuations, and of the vertical velocity and density
skewness. It can be seen that the LES curves are very close to the DNS curves. Similar
agreement was found for profiles of other flow properties such as root-mean-square
vertical velocity, density, or convective buoyancy flux. The only sensible divergence
between LES and DNS was detected in the profiles of second and third moments
close to the free surface (see figure 14b—d). The explanation of this is the inability
of the LES computational grid to properly resolve the small-scale features of the
velocity and density fluctuations associated with descending liquid sheets generated
near the free surface.

Figures 13 and 14 do not provide the information that would allow us to contrast the
performance of dynamic and Smagorinsky SGS models. At the numerical resolution
and Reynolds number used in the computations, both models perform equally well.
The difference becomes visible if we compare the SGS quantities. For example,
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figure 15 shows profiles of eddy viscosity and eddy diffusivity coefficients. In the DNS
run, we estimate v, and «, after each time step filtering the velocity and density fields
to a horizontal grid with the step A = 4A, evaluating the SGS stresses t;; and t,; as
in (24) and (25), and computing

1 (my — 8tk /3)Si; o  1i0p/0x;
2 (Sy)? ’ Y (0p/oxi)>

The magnitude of the model coefficients both for the Smagorinsky and the dynamic
model is larger than the values found in the DNS. Such a difference is typical for
a-posteriori tests of the closure models (see e.g. Kimmel & Domaradzki 2000). What
gives the dynamic model an advantage is that it provides the physically justified
spatial behaviour of the model coefficients and other SGS quantities. Figure 15 clearly

vt=
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demonstrates the similarity between the shapes of profiles of v, and k, produced by
the dynamic model and obtained in the DNS. The dynamic model reproduces nearly
uniform distributions of v, and k; in the core flow and correct behaviour in the
boundary layers. Both in DNS and dynamic calculations, v, vanishes in the bottom
shear boundary layer and grows near the upper surface (see figures 15¢ and 15d),
while the eddy diffusivity «, tends to zero in both density boundary layers (figures 15¢
and 15f). In contrast, the spatial behaviour of the coefficients obtained using the
Smagorinsky closure is significantly different from that observed in the DNS.

A similar picture was observed for the SGS dissipation of kinetic and potential
energy (not shown here). Spatially similar profiles of ¢, and y, were obtained in DNS
and dynamic LES runs but not in the run with the Smagorinsky model.

A comment is in order regarding the value of the turbulent Prandtl number
Pr, = 0.25 obtained in the dynamic LES. DNS computations produced a value of
Pr, in the core flow which was closer to the traditional value of 0.5. The conclusion
is that the 0.25 value is specific to the scaling version of the dynamic model.

Summarizing the results presented in this section, we may say that, at a moderate
Reynolds number, the comparison between LES and DNS did not reveal any specific
advantages of the dynamic model over the classical Smagorinsky closure in the sense
of modelling of grid-scale flow characteristics. However, the scaling version of the
dynamic model demonstrated its ability to follow more closely the proper spatial
behaviour of SGS quantities both for the velocity and density fields. Therefore, we
can expect that the dynamic model will provide better results than the Smagorinsky
model at larger Reynolds number.

5. Concluding remarks

In this paper, we have presented the results of numerical simulations of turbulent
convection generated by surface cooling in a layer of finite depth. We applied the
LES method based on a dynamic SGS closure and verified the computations by
comparison with the DNS results.

The flow evolution associated with the surface cooling consists of two principal
phases: that of initial development characterized by the primary instability of the
conductive surface layer and generation of descending thermal plumes, and that of
developed turbulent convection. During the second phase, the flow attains the form
of a well-mixed core with thermal and velocity boundary layers at the top and bottom
boundaries.

It has been found that in spite of flow unsteadiness (continuously growing volume-
averaged potential and kinetic energy) the spatial structure does not change with time
after the turbulence becomes fully developed.

One of the most important conclusions that can be reached on the basis of our
simulations is that only the first phase of the flow evolution is affected by the initial
stable stratification. During the second phase, the flow ‘forgets’ the stratification.
Comparison between two runs with the Richardson numbers differing by a factor
of five indicates that the properties of developed turbulence are insensitive to the
strength of stratification. We may assume that similar results could be obtained in an
initially neutrally stratified layer.

The spatial structure and other properties of the flow can be best appreciated in
comparison with other well-studied turbulent flows in horizontal layers such as the
Rayleigh-Bénard flow, the planetary boundary layers, convection driven by internal
heat sources, or flow between heated and insulated rigid plates. As expected, the
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computations revealed that convection driven by surface cooling in shallow water
possesses all the generic features of the family. In particular, we clearly detected
such effects as thermal plume generation, development of a well-mixed core region,
generation of velocity boundary layers by plumes hitting the rigid wall, and a tendency
toward establishment of a large-scale circulation pattern.

The computations also revealed distinctive features of the flow, such as a conductive
boundary layer near the free surface and flow asymmetry with respect to the mid-plane.
Close to the free surface, the flow is characterized by intense turbulent fluctuations
of the density field and strong surface currents generated by the combined action of
liquid sheets and plumes descending from the top boundary and plumes ascending
from the bottom. This part of the flow clearly resembles other convective flows with
a free surface such as the granulated solar convection or convection driven by surface
evaporation.

The asymmetry of flow properties with respect to the mid-plane was demonstrated
by visualization of density and velocity fields, horizontally averaged vertical profiles,
and probability density functions. It has been shown that the turbulent flow is
dominated by a pattern of descending thermal plumes. The analogous pattern of
ascending plumes is less organized and characterized by considerably weaker coherent
fluctuations of density and vertical velocity. This property of our system places it
halfway between the completely asymmetric flows such as the planetary boundary
layer or the flow considered in AFB86, where the plumes are generated on one surface
only, and the completely symmetric Rayleigh-Bénard system, where the plumes are
generated equally on both sides.

It is necessary to stress that our computations do not allow us to reach any
ultimate conclusions regarding the persistence and specific shape of the large-scale
circulation pattern in the real convective flow. The calculated velocity and density
fields illustrated in figures 6(b) and 8 indicate that such a pattern might exist. One must
take into account, however, that, as shown by horizontal correlations in figure 7, the
largest scales of the computed flow are affected by the periodic boundaries. Further
computations with significantly larger aspect ratio of the computational domain are
needed to resolve this issue.

We would like to make a comment regarding the unsteady character of the flow.
As was discussed earlier in the paper, the average density of the layer increases
continuously because the imposed heat flux at the top boundary is not fully balanced
by the heat flux induced by the temperature difference between the cooled interior
and the isothermal bottom. Remarkably, as soon as the stage of developed turbulence
is achieved, the effect of unsteadiness reduces almost completely to cooling of the
layer as a whole. The impact on the dynamics of turbulent motions is very limited.

Careful visualization of horizontally averaged density profiles have shown that
neither the slope in the core region nor the thickness of the thermal boundary layers
vary with time. The profile of r.m.s. vertical velocity fluctuations (w?)!/?(z) remains
virtually unchanged. It can be seen in figure 3 that the total kinetic energy in the hor-
izontal velocity components experiences certain growth over the period of developed
turbulence (about 50% in terms of r.m.s. value). Visualization of the evolution of the
profile (u> + v?)!/?(z) revealed that the growth is distributed homogeneously over the
depth, so that the shape of the profile does not change with time. We were unable
to detect a particular mechanism of this growth. It can be related to development of
the system of ascending thermal plumes or to evolution of the large-scale circulation
pattern.

More comments are in order on the possible effect of the alternative density
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boundary condition at the lower boundary. It was discussed in the introduction
that both the isothermal and adiabatic conditions may serve as approximations of
the actual ocean bottom. Further investigations of this subject are necessary. At this
point, we can only mention that the adiabatic condition would render the system more
similar to the system studied in AFBS86, i.e. a layer with one heated (or cooled) and
one insulated boundary. Such a flow would be completely dominated by descending
thermal plumes with corresponding consequences for spatial and statistical properties.
Furthermore, the flow unsteadiness would manifest itself as a constant linear growth
of the density in the entire layer while Hy remained constant.

Apart from understanding the flow properties, our goal in this paper was to
evaluate the performance of the scaling version of the dynamic SGS closure proposed
by WL94. The subgrid-scale model was applied in the horizontal directions only, the
flow being fully resolved in the vertical direction. This allowed us to avoid the problems
associated with the modelling of boundary layers but limited the computations to
cases with moderate Reynolds number, where most of the flow scales are resolved in
a direct fashion. The moderate Reynolds number was the reason why the comparison
with DNS results has not allowed us to draw an ultimate conclusion about possible
advantages of the dynamic closure over the classical Smagorinsky method. Mean
velocity and density distributions obtained with both the closures agree nicely with
DNS computations. However, the dynamic closure has demonstrated its advantage in
reproducing more physically justified patterns of eddy coefficients and SGS dissipation
of kinetic and potential energy. Therefore, one can anticipate better performance of
the dynamic closure at the higher Reynolds numbers typical of realistic ocean flows.

This work was supported by the US Office of Naval Research (grant N00014-00-1-
0218, Program Manager: Dr Tom Curtin). The authors thank the referees for careful
reading of the manuscript and useful comments.
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